The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination.
نویسندگان
چکیده
Histone deacetylase (HDAC) is a chromatin-remodeling factor that contributes to transcriptional repression in eukaryotes. In Arabidopsis (Arabidopsis thaliana), the transcription factors LEAFY COTYLEDON1 (LEC1), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE3 (ABI3) play key roles in embryogenesis. Although the repression of embryogenesis-related genes during germination has been proposed to occur, the role of HDAC in this process has not been elucidated. To address this question, the effects of an HDAC inhibitor and suppression of the Arabidopsis HDAC genes on this process were investigated. Here, we show that treatment of an HDA6 repression line with the HDAC inhibitor trichostatin A resulted in growth arrest and elevated transcription of LEC1, FUS3, and ABI3 during germination. The growth-arrest phenotype of the repression line was suppressed by lec1, fus3, and abi3. An HDA6/HDA19 double-repression line displayed arrested growth after germination and the formation of embryo-like structures on the true leaves of 6-week-old plants even without trichostatin A. The growth-arrest phenotype of this line was rescued by lec1. These results suggest that during germination in Arabidopsis, HDA6 and HDA19 redundantly regulate the repression of embryonic properties directly or indirectly via repression of embryo-specific gene function.
منابع مشابه
Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response
Histone modifications play an important role in the epigenetic regulation of gene expression. All histone modifications are reversible, which may therefore provide a flexible way for regulating gene expression during the plant's development and during the plant response to environmental stimuli. The reversible acetylation and deacetylation of specific lysine residues on core histones are cataly...
متن کاملHISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings.
The seed maturation genes are specifically and highly expressed during late embryogenesis. In this work, yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that HISTONE DEACETYLASE19 (HDA19) interacted with the HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2-LIKE1 (HSL1), and the zinc-finger CW [conserved Cys (C) and Trp (W) residues] domain of ...
متن کاملHD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis
HD2 proteins are plant specific histone deacetylases. Four HD2 proteins, HD2A, HD2B, HD2C, and HD2D, have been identified in Arabidopsis. It was found that the expression of HD2A, HD2B, HD2C, and HD2D was repressed by ABA and NaCl. To investigate the function of HD2 proteins further, two HD2C T-DNA insertion lines of Arabidopsis, hd2c-1 and hd2c-3 were identified. Compared with wild-type plants...
متن کاملHistone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis.
Histone deacetylation regulates gene expression during plant stress responses and is therefore an interesting target for epigenetic manipulation of stress sensitivity in plants. Unfortunately, overexpression of the core enzymes (histone deacetylases [HDACs]) has either been ineffective or has caused pleiotropic morphological abnormalities. In yeast and mammals, HDACs operate within multiprotein...
متن کاملMicroRNAs regulate the timing of embryo maturation in Arabidopsis.
The seed is a key evolutionary adaptation of land plants that facilitates dispersal and allows for germination when the environmental conditions are adequate. Mature seeds are dormant and desiccated, with accumulated storage products that are to be used by the seedling after germination. These properties are imposed on the developing embryo by a maturation program, which operates during the lat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 146 1 شماره
صفحات -
تاریخ انتشار 2008